IMPLEMENTATION OF TEAN-SLEEP FOR WIRELESS SENSOR NETWORKS

Jesus Jaquez, David Valencia, Manikanden Balakrishnan,
Eric E. Johnson and Hong Huang
New Mexico State University
Las Cruces, NM
August 19, 2009

ABSTRACT

Wireless Sensor Network have many potential applications,
including environmental monitoring and threat surveillance,
among many others. Sensor nodes are limited in processing
capabilities, radio range, storage but most importantly in
energy. When a node’s energy is exhausted, the node can no
longer provide sensor data to the network, nor can it forward
data from other nodes. This can result in a network partition.
One way a node may extend its lifetime is by the use of
sleep. In many of the applications of WSNs the nodes are idle
most of the time until an event occurs and information needs
to be transmitted. A node is able to save energy while idle
by sleeping. Topology and Energy Adaptive, Non-synchronous
(TEAN) sleep provides the nodes in a network a mechanism
to save energy by sleeping while also keeping a connected
network. In this paper, we present an implementation of TEAN-
sleep in tinyOS on a 50 node test bed of Crossbow TelosB
motes. Preliminary test results show significant improvement
in network lifetime when TEAN-sleep is engaged, with insignif-
icant degradation of connectivity.

I. INTRODUCTION

Wireless Sensor Networks consist of sensor nodes which
have the capability to communicate, process information, and
sense the area around them. These devices work together in
order to perform such tasks as environmental and disaster
monitoring [1].

In many applications nodes are idle for a huge percentage
of their lifetime. Many approaches have been used in order
to try to extend the operational lifetime of a network. These
include topology control and energy harvesting, among many
others.

In this paper we provide an implementation of the TEAN-
sleep algorithm [2] in tiny Operating System (tinyOS) [3].
This implementation is tested on Crossbow Telosb motes [4].
The paper gives a review of TEAN-sleep, details regarding its
implementation, performance analysis, and finally conclusions.

A. Related Work and Original Contributions

Conserving energy and extending the lifetime of sensor
nodes is an important topic in the area of WSNs. Many pro-
posals have been made in order to address possible solutions to
these problems. Researchers have investigated the use of sleep
scheduling as in [5] and some which pair sleep scheduling with
the reduction of redundant sensing by nodes which cover the
same area [6]. In [7] locally available information is used in

order to make decisions about sleeping. Each node calculates
a drowsiness factor, an estimate of a sensors current energy.
It then will compute its Shout Time Delay. If the node has a
small Shout Time Delay then it is more likely to be able to
sleep.

Original Contributions The original work [2] aimed at
introducing the framework, and simulations were done under
idealistic channel conditions. The predicted alpha-performance
of connectivity based sleep coordination is heavily dependent
on the underlying link behavior, and thus analysis under
real wireless channel environments is required to quantify
TEAN-sleep performance. In that perspective, the following
are original contributions of this paper:

o Update of Sleep Eligibility Condition

o Implementation and verification of TEAN-sleep algo-

rithm

o Link establishment and maintenance

o Design and implementation of the routing layer

II. TEANSLEEP

TEAN-sleep was first introduced in [2]. The premise of
TEAN-sleep is to allow nodes in a network, who are idle,
to sleep, given that they meet certain energy and connectivity
requirements, which are described in the following sections.
TEAN-sleep has the following characteristics [2]:

o Topology adaptive: WSNs are densely deployed for ro-
bustness against frequent node and link failures, which
implies only a subset of nodes is required to establish
a connection backbone for reliable information supply.
The rest of the nodes could sleep to conserve energy
without impacting network connectivity. TEAN-sleep ap-
plies a sleep condition that ensures network connectivity
is maintained and only the redundant nodes are switched
off. Nodes adapt their sleep decisions based on locally
computed neighborhood topology.

o Energy adaptive: When preparing to sleep, a node will
calculate the time it can go to sleep based of its energy
level relative to the average energy of its 1-hop neighbors.
This will cause energy starved nodes to sleep for longer
amounts of time.

Sleep Duration, Ts,is calculated as:

1—Py
Te =
S P4

Equation 1 defines the amount of time that a node will be
able to sleep. In this is equation P4 is the probability that a

T'a)

Paper ID# 900570.PDF

node is in an active state. The formulation of P4 is described
in equation 2. T4 is the average amount of active time within
a duty cycle.
- E—-E;
PA PA /\ATcon'uerge (2)

P, is the average probability that your neighbors are in
an active state. F is the average of your neighbors energy
levels. F; is a nodes current energy level (Joules). A 4 is equal
to the dissipation rate (J/s) in active state. Tiopperge 18 the
amount of time in which a node should try to converge to the
neighborhood energy average.

In this work P4 has been set to 0.5. Our intent is that every
node have a duty cycle of 50%. A4 is a constant set to the
dissapation rate when a TelosB mote is in active state with its
radio on. Finally T, erge has been set to 3 Hello Intervals
(HI). As given in [2] we should see about a 50% duty cycle.
A 50% duty cycle may seem to be high for a sensor network.
It has been chosen in order to shorten the length of testing
this implementation.

Based on these equations we can see that as a node drops
below its neighborhood average it will begin to sleep longer.
Conversely it will sleep less if its current energy level is greater
than the average of all of its neighbors.

o Free sleep: The amount of sleep is not governed by any
fixed duty cycle. In TEAN-sleep a duty cycle is defined as
a listening period followed by a sleep period. A node who
goes to sleep is never woken up by some predetermined
duty cycle.

« Distributed, minimal overhead: Sleep decisions are made
by a node and based on information a node has gained
about the network from its 1-hop neighbors. The message
exchanges incur some energy overhead but it is mitigated
by sleep.

A. Control Messages

There are two types of control messages in TEAN-sleep.
They are the Hello message and the Sleep beacon. These
messages are used in order to exchange information with 1-hop
neighbors. Node identifications are not used in either message
payload because they appear in the the tinyOS packet header
and can be retrieved from it.

Hello messages are broadcasted periodically, every Hello
Interval (HI). They include information about a nodes current
1-hop neighbors and the amount of energy it currently has.
This information provides each node with a 2-hop view of the
network and is used when calculating the Sleep Eligibility
Condition (SEC). Figure 1 shows the structure of a Hello
message.

The maximum payload of a packet in tinyOS is 28 bytes.
This allows for listing of up to 26 1-hop neighbors In the
future an implementation of packet fragmentation algorithm
may allow inclusion of more neighbors.

A sleep beacon is transmitted when a node determines that
it is eligible to sleep. This packet contains the amount of time

Energy Level (J) List of 1-hop neighbor identifications

16 bit energy value List of 8 bit addresses

Fig. 1. Hello Packet

that a node is going to be asleep. It also serves as a way to
keep 1-hop neighbors informed about a nodes current status.
Upon the reception of a sleep beacon a node will recompute
his SEC to reflect this change. The Sleep beacon is shown in
Figure 2.

Sleep Duration (Ts)

16 bit time value

Fig. 2. Sleep_beacon Packet

B. Network Information Table (NIT)

As stated above, A node will store information from Hello
packets and Sleep beacons of all 1-hop neighbors. The NIT is
shown in table I. It contains a list of all 1-hop neighbors, all
neighbors of 1-hop neighbors (extended neighbors), current
sleep state, and expiry time. The SEC is based upon this
information.

TABLE I
NETWORK INFORMATION TABLE

1-hop sleep Extended expiry
neighbor | flag Neighbors time
Neigh 1 Yes list of 1’s neighbors 3*HI
Neigh 2 No list of 1’s neighbors 3*HI
Neigh n No list of n’s neighbors 3*HI

C. Sleep Eligibility Condition (SEC) and Update

The original sleep eligibility condition states the following:
“A node, n, is eligible to sleep if and only if all 1-hop
neighbors in n’s NIT, both awake and sleeping, are connected
to at least one other currently awake neighbor of n.”

This condition seems very intuitive but in the process of
implementing this work we have found a case in which this
condition fails. Figure 3, shows an example in which the above
definition fails. In this example node 5 should be unable to
sleep, since doing so causes a partition in the network. Nodes
6, 7, 8, and 9 are cut off from the rest of the network.

It can be seen that all of node 5’s 1-hop neighbors (3,4,6,
and 7) are connected to another of node 5’s 1-hop neighbors:
nodes 3 and 4 are mutually connected as are nodes 6 and 7.
Node 5 would compute an SEC equal to 1. Due to this we
have adapted the SEC based upon a nodes hop count to the
sink.

Updated SEC: “A node, n, is eligible to sleep if and only if
all 1-hop neighbors, both awake and asleep, with a hop count

2 of 7

Paper ID# 900570.PDF

2|No|1,3,4 6|Nol5,7,8 5|No|6,7,3,4
4|No|2,3,5 7|No|5,6,8 7|No|5,6,8
5|No|3,4,6,7 3|No|2,4,5 8|No|6,7,9

4|Noj2,3,5

2|No|3,4 8|No|6,7

6|No|5,7,8

1|No|2

3|No|2,4,5 7|No|5,6,8

4|No|2,3,5 9|No|8
2|No|1,3,4 5|No|6,7,3,4
3|No|2,4,5 6|No|5,7,8
5|No|3,4,6,7 8|No|6,7,9

Fig. 3. SEC Failure Example

greater than n’s hop count is connected to at least one other
currently awake 1-hop neighbor of n with a hop count less
than or equal to n’s hop count.”

Now returning to figure 3, node 5 would compute a SEC
equal to 0. This is due to the fact that two of its neighbors, 6
and 7, are not connected to any other nodes with a hop count
less than or equal to that of node 5.

The updated SEC assumes that the routing being used only
forwards packets based upon hop count and it will never send
packets to a neighbor whose hop count is equal to or greater
than that of the originating node. This routing scheme is used
in this implementation and given in more detail later in this
paper. Although this updated SEC will provide us with a
more reliable condition for sleeping, it also limits the use of
a byzantine routing protocol.

D. Energy Model

The energy model used in this implementation is based off
measurements given for the TelosB mote given by Crossbow.
All nodes start with a set energy level. It is assumed that new
batteries have the same amount of energy.

A node updates its current energy level after sending or
receiving any control message or whenever a node has a
timeout for the Hello packet, i.e. every HI. Sending and
receiving account for when a node is active, whereas the
timeout for Hello packets accounts for times when a node is
idle but has its radio on. Table II shows the power consumption
of the TelosB mote obtained from Crossbow [4].

TABLE 11
POWER CONSUMPTION MODEL

Mote Operating Mode | Power Consumption (mW)
(with 3V supply)

Active, Radio Transmit 57.6

Active, Radio Receive 74.4

Idle(Active, Radio Idle 0.063

Sleep(Radio/MCU off) 0.018

E. State Machine

TEAN-sleep can be viewed as a state machine, figure 4,
with the following states:

o Awake_RecordUpdate (Awake_RU) serves to provide
nodes with time to receive control packets and update

HI timeout,
active state

Send Hello

Receive Control
Packets

Update Data
Structures, SEC,

Send Hello

Tstimeout/sensor
event detection

Awake_RU
(For Tru)

Tru Timeout Tsw Timeout,

SEC=0

Awake_SW
(For Tsw)

~ Tsw Timeout,
SEC =1

Send Sleep
Beacon

Fig. 4. TEAN-sleep State Machine

their NIT. They stay in this state for a time of Tgy,
which is equal to one HI.

o Awake_SleepWait (Awake_SW) is used to randomize the
instances at which nodes will go to sleep if they are
eligible. A node will stay in this state for a time of Tsyy .
Equation 3 stipulates the amount of time that a node will
be in this state. If a nodes probability of being awake,
P4 (equation 2), is high then it will stay in this state
longer than a node with a low Pj4.

Tsw = Pa—- 3)

o Sleep is the state in which a node has calculated that it
meets all the requirements to power down its radio and
put the microprocessor in the lowest possible power state.
The amount of time the node is in the sleep state is the
sleep duration, Ts. This value is energy adaptive with
respect to a nodes energy level and the average energy
level of its 1-hop neighbors. The sensors on the nodes
are not shut down. This provides, in the case of event
monitoring, a means to wake a node up if the application
deems it necessary due to some event.

Upon bootup nodes employing TEAN-sleep will send out
a Hello Message. This message serves as a signal that a node
is actively participating in TEAN-sleep. The node then goes
into the first state of the state machine, Awakery. In this
state a node actively listens for any updates from its 1-hop
neighbors. After a time of Ty the node then transitions into
the Awakegy, state. In this state a node calculates its timeout
Tsw. A node will then check if it is eligible to sleep.

If the node is eligible to sleep it will send out a sleep beacon
to inform its 1-hop neighbors and then go to sleep for T's. Once
it awakens it sends a Hello message and repeats the process.
Conversely, if a node is ineligible to sleep then it returns to the
Awakepy state and repeats the process. Nodes actively send
out Hello packets every HI while in an active state. For more
information on TEAN-sleep please refer to [2].

III. IMPLEMENTATION

In order to test TEAN-sleep, network construction and a
routing layer needed to be implemented. They are described in

3 0of 7

Paper ID# 900570.PDF

the subsequent sections. These two layers were kept as simple
as possible while still providing adequate performance to the
system. It was also decided that these would be developed
locally to ease their integration with TEAN-sleep.

A. Network Construction

Network construction occurs in the following fashion. Every
node in the network periodically sends a ping message, which
announces that it is looking for neighbors. All nodes which
can hear this message, i.e. 1-hop neighbors, will respond with
a pong message. Upon reception of the pong message the
originating node will append an entry to its route table for
each source of a pong message. These links are marked as
active and bidirectional. Each responding node will wait for
an acknowledgment to be received; if the acknowledgment is
received, an entry is appended to its route table and the entry
is marked as active and bidirectional, otherwise it will be set
to active and unidirectional. Figure 5 shows the format of a
ping message.

Parent Sequence Number Hops to sink

16 bit address 32 bit sequence number 8 bit hops to sink value

Fig. 5. Ping Message

The ping message contains information about the nodes
parent and its hop count to the sink. The pong message
contains information about its parent, its hop count, and also a
Received Signal Strength Indicator (RSSI) measurement of the
ping packet. The Pong message format is shown in Figure 6.

Parent Sequence Number RSSI Hops to sink

16 bit address 32 bit sequence number 8 bit received signal 8 bit hops to sink value

strength indicator
value

Fig. 6. Pong message

Network discovery begins at the sink node and expands
outwards as nodes send ping messages. Furthermore, network
discovery is periodic. Nodes update their route tables upon
reception of either message. This also gives a basis for the
number of hops in the network and is a shortest path problem.

Initially a node reports a hop count of 255. This number
describes that the node currently has no route to the sink. It
also reports a parent of 0, this informs neighbors that the node
does not have a valid parent.

Once a node adds an active link it must receive another ping
from the node within 3 ping periods in order to keep the link
active. This is done to avoid stale links in the routing table. If
a link becomes stale it is set to inactive and and all values (hop
count, parent, etc) are reset. This is a precautionary measure
so a node does not use stale information when choosing a
parent.

At startup the sink is the only node which has a hop count,
set to 0. It reports this value. All of the 1-hop nodes will
report a hop count of 1. Their 1-hop neighbors, who are not
also neighbors of the sink, will now report a hop count of 2.
This process propagates from the sink outward to the other
nodes in the network.

B. Routing

The routing algorithm used is proactive and uses hops to the
sink, obtained from ping messages, to determine which node
it will route to. Nodes maintain a route table that is updated
upon the reception of any ping or pong message as well as
any control message from TEAN-sleep.

When a node needs to deliver a packet to the sink it will
first find its neighbor with the lowest hop count to the sink.
It will then check if the link is still active. If the link is still
active it will check to make sure that it is not the parent of the
node it is going to send to. This precaution occurs in order to
counter routing loops. It also makes sure that the node has a
valid parent. Finally, if TEAN-sleep is being used, it will make
sure the node is not currently asleep. If all these conditions are
valid it will select this node as the destination of its packet.
Once received at the destination node, it will go through the
same procedure. This will happen until the data packet makes
its way to the sink.

C. Forwarding Data

Packets are sent using a forwarding engine. The forwarding
engine uses the pool component that is provided in tinyOS
[3]. This component is a dynamic memory pool and is used
to buffer data messages upon their reception or creation. In this
work two memory pools are used. One of the pools is used
for data messages generated locally (source message pool) and
the other pool is used for data messages which were generated
at other nodes (forward message pool).

It also uses the queue component that is provided in tinyOS.
It is a first in first out (FIFO) queue and accepts elements that
are pointers to the messages in the pools.

Packets generated locally and from other nodes in the net-
work will be passed to the forwarding engine. The forwarding
engine will then be put the messages into the respective pool.
The packet will then be put into the queue and then sent.
Once sent, the packets will be dequeued and released from
the appropriate pool.

D. Application

The application being tested is based on uniform events,
which is similar to a typical surveillance scenario. The data
packet structure, Figure 7, and its Header, Figure 8, are shown
below. Currently, data generation occurs every minute from the
time a node boots. A data packet is generated by populating
the packet values from the following sensors: Voltage, Photo
Radiation, Solar Radiation, Temperature, and finally attaches
the energy level the node currently has. This packet is then
passed to the forwarder and handled accordingly.

The header contains a source field, a sequence number
and also a time to live (ttl) value. The source is the node

4 of 7

Paper ID# 900570.PDF

identification number of the node which originated the packet.
The sequence number is the current packet number, all nodes
initially start with a sequence number of O and it is incre-
mented every time a packet is generated. Finally a packet has
a max number of hops to reach the sink, the ttl value; if this
number is exceeded the packet is dropped.

Sequence Photo Solar Energy

Number Event ID Voltage Radiation Radiation | emPerature Level
" 16 bit 16 bit Solar 16 bit i

32 bit ; 16 bit PAR it Sol

Header sequence 32 bit event ID voltage value Radiation temperature 16 bit
umber value value value energy

level value
Fig. 7. Data Packet

Sequence

I
Source Number

32 bit sequence 8 bit time to live

16 bit adress
number value

Fig. 8. Header of Data Packet

E. Architecture

This implementation was separated into several components.
Separation of components was done in order to restrict the
access between different components in the system and more
importantly for clarity. The implementation of this algorithm
is encapsulated under one file, the configuration file, which
provides all components to the application layer. The compo-
nents consist of the following:

e Route Table - a generic module which provides access
to a data structure which maintains 1-hop neighbor infor-
mation

« Routing Engine and Network Construction - provides the
logic for network discovery, link maintenance, and finally
the selection of neighbors to forward data to

o Forwarding Engine - provides access to data forwarding

o TEAN-sleep - provides the implementation of TEAN-
sleep, described herein

When booted a node first starts the application. Once the
application has started it will start the routing engine. The
routing engine in turn starts TEAN-sleep and the forwarding
engine. A state variable is used in order to keep the current
state of each component (on or off).

The components act as they were described above. If a node
calculates that it is eligible to sleep it will signal the application
layer. The application will then turn off the routing engine. The
routing engine will then turn off the forwarding engine. The
TEAN-sleep component is never shut down when entering the
sleep state. This is because the call to sleep is triggered in
the TEAN-sleep component. To wake up the node a timer is
set with a time of Ts. Once a timeout occurs TEAN-sleep
will signal the application that it should wake up the other
components. The application restarts the routing engine, which
restarts the forwarding engine.

If the TEAN-sleep service needs to be shut down by the
application it can be turned off. This may need to happen if
say an event, such as a volcanic eruption, occurs and packet
delivery supersedes network lifetime.

IV. EXPERIMENTAL SETUP

TEAN-sleep was tested in the Electrical and Computer
Engineering building at New Mexico State University. Node
1, the sink, is set up in the middle of a hallway on the second
floor of Thomas and Brown. It is connected to a computer
for logging of incoming data packets. A second node placed
next to the sink is sniffing packets from the network. It is not
actively participating in this experiment. On the second floor
of the building we have 21 additional nodes. Eight nodes, 3 in
the east stairwell, 3 in the west stairwell, and 2 nodes in the
south stairwell are bridge nodes to the remaining 21 nodes
which are placed on the third floor of Thomas and Brown
Hall. Figure 9 shows a representation of the second and third
floor layouts used for this experiment, nodes within the dashed
boxes are the stairwell nodes.

18 14 10 6 @ 7 11 13
s PO@ O YO OE _
A0 60 OO ®®

® @@

®e @e),

©, T

5 P90 @ ®O ®O _
QOO ® @0 6 ®

\

Node Placement, second floor (top) and third floor (bottom)

Fig. 9.

V. PERFORMANCE ANALYSIS

In this section we present an analytical model, as well
as the results from our experiments. The analytical model is
presented in order to give a prediction of lifetime for nodes at
a lower active duty cycle than the one used in the experiment.

A. Analytical Model

In this analytical model we have made several assumptions.
It is assumed that every node behaves perfectly. Nodes always
have an awake period followed by a sleep period. Another
assumption made is that each node has ten neighbors in its
route table. Forwarding of data is handled by assuming that
each node is uniformly distributed and that each hop area
contains 10 nodes. This model also did not account for any
sleep provided in tinyOS.

Equation 4 gives the model for the lifetime of a node. L(z)
is the measure of lifetime in seconds. x is the active portion of
the duty cycle and is bounded between 0 and 1. E\,s4pie 1S the
usable energy of two AA batteries and D(z) is the dissipation
rate and is defined in equation 5.

5 of 7

Paper ID# 900570.PDF

Eusable
L(x) = 4
The dissipation rate consists of two terms. The first being
A(x), it is the power dissipated while a node is in an active
state. The second, S(1 — x), is the power dissipated while a
node is in a sleep state.

D(z) = A(z) + S(1 —x) ®)

In order to calculate A(x) a snapshot of the network was
taken. This snapshot encompassed every packet, transmitted
and received and accounts for times when the node is idle.
S(1—=x) is given in the telosB data sheet [4]. In order to find
FE.sapie @ power curve was integrated using Simpson’s Rule.

In this analytical model we have made calculations for node
lifetime depending on hop count to the sink. Figure 10 shows
the predicted lifetime for a node at a one-hop distance to the
sink. Since a one-hop area will forward a higher rate of packets
to the sink than any other region the network should become
partitioned, and therefore unavailable once the 1-hop area has
died. The analytical model predicts that a node not using sleep
will last 5.5 days. With a 50 percent duty cycle a node will
stay alive for 6.05 days and finally at a 25 percent duty cycle
a node will die after 12.34 days.

14

12

o

Node Lifetime (days)
& O o

N

25 50 100
Active Duty Cycle (percent)

o N

Fig. 10. Analytical Model: 25,50, and 100 percent duty cycles

In this model, a node must use an active duty cycle of no
more than 54 percent. At this point and above the amount of
overhead incurred by TEAN-sleep is detrimental to lifetime.
In order to get a node lifetime of months or years we would
need to set the active portion of the duty cycle to about 10
percent or lower. At a 10 percent active duty cycle the lifetime,
acording to the model, for a node would be approximately 30
days. Clearly droping the active duty cycle closer to 0 percent
would have the effect of expanding lifetime.

B. Results

Experiments were run according to section IV. Nodes are
started up with the evens from 2 through 50 in ascending order
and then the odds 3 through 49 in descending order.

Figure 11 shows the results from the experiment. The net-
work, for experiments which did not use sleep, was available
for a total of 6.96 Days. In the TEAN-sleep tests the network
was available for 9.63 days. In these tests the network was

deemed available as long as as 85 percent of the nodes in the
network were still reporting data packets to the sink.

Obviously a network which employs sleep will have a
longer lifetime than one that does not. That being said, these
results show that sleep coordination can be handled at the
neighborhood level. Another concern was how sleep would
interact with the routing layer. In these experiments there was
no significant degradation in the reports from nodes further
away from the sink.

12

5}

Network Lifetime (days)
o

TEAN-sleep
50 percent Active Duty Cycle

No Sleep

Fig. 11. Experimental Results for 50 percent duty cycle

As stated earlier the model used herein did not account for
any sleep that was provided by tinyOS. This may account
for some of the error between the theoretical value and the
observed values. It was decided not to disable any sleep
patterns offered by tinyOS as it would skew the performance
of TEAN-sleep. In an actual deployment of nodes one would
never disable any energy saving techniques.

VI. CONCLUSIONS AND FUTURE WORK

This paper provided the details of an implementation of
TEAN-sleep in tinyOS, which was tested on Crossbow TelosB
motes. It showed that sleep coordination efforts can be done
at the neighborhood level and showed the savings in energy
inherent with sleeping.

Testing TEAN-sleep under varying duty-cycles is of great
importance. It is important in order to validate the impact
of TEAN-sleep on the performance of links as well as other
layers, particularly the routing layer.

Nodes in a high density network will have a greater chance
of sleeping, thus extending the lifetime of a network. It would
be of great advantage to look at the performance of TEAN-
sleep with varying node densities.

In this work we paired TEAN-sleep with simple yet ad-
equate network construction and routing algorithms TEAN-
sleep would benefit from more robust algorithms. The SEC
condition used in this work is based on hop count. It would
extend the operation of TEAN-sleep if it were able to route
packets in any direction. For this to happen a new SEC
condition would need to be created and validated.

REFERENCES

[1] E. Zhao and L. Guibas, Wireless Sensor Networks: An Information and
Processing Approach. Morgan Kauffman Publishers, 2004.

6 of 7

Paper ID# 900570.PDF

[2] M. Balakrishnan, E. E. Johnson, and H. Huang, “Tean-sleep for dis- [6] S. Chachra and M. Marefat, “Distributed algorithms for sleep scheduling

tributed sensor networks: Introduction and alpha-metrics analysis,” in in wireless sensor networks,” in Proc. IEEE International Conference on

Proc. IEEE Military Communications Conference MILCOM 2007, 29— Robotics and Automation ICRA 2006, 15-19 May 2006, pp. 3101-3107.

31 Oct. 2007, pp. 1-7. [7]1 G. Simon, M. Molnar, L. Gonczy, and B. Cousin, “Dependable k-coverage
[3] [Online]. Available: http://www.tinyos.net/ algorithms for sensor networks,” in Proc. IEEE Instrumentation and
[4] Http://www.xbow.com/. [Online]. Available: http://www.xbow.com/ Measurement Technology, 1-3 May 2007, pp. 1-6.

[5] D. Shuman and M. Liu, “Optimal sleep scheduling for a wireless sensor
network node,” in Proc. Fortieth Asilomar Conference on Signals, Systems
and Computers ACSSC ’06, Oct. 29 2006-Nov. 1 2006, pp. 1337-1341.

7 of 7

