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Abstract— Distributed Wireless Sensor Networks (WSNs) op-
erate under severe energy constraints and are largely character-
ized by short-range multi-hop radio communications, which sig-
nify the role of energy-efficient routing schemes for such net-
works. Fuzzy Diffusion, an energy optimization on the general 
diffusion schemes for application-aware sensor networks, has 
been shown to offer substantial improvement in WSN lifetime 
and connectivity. The initial exploration depicted the advantages 
of extreme conservative routing in dense WSNs. However, a pro-
gressive investigation of fuzzy diffusion is needed to address sev-
eral important aspects of the protocol mechanism and to quantify 
its applicability.   

Fuzzy diffusion is primarily based upon energy-aware routing 
decisions, and so an analysis of the impact of decision-making 
strategies on the protocol performance is required to substantiate 
the use of any specific tool. The purpose of this work is to quan-
tify the contribution of fuzzy logic in computing efficient for-
warding decisions as compared to simpler, straightforward crisp 
decision-making strategies. Further, this paper aims at exploring 
the network and traffic scenarios under which fuzzy diffusion 
scheme would be efficient, through a series of simulation experi-
ments. 
 

Index Terms—Wireless Sensor Networks, Routing, Fuzzy 
Logic, ns2.    
 

I. INTRODUCTION 

ireless Sensor Networks (WSNs) recently have found 
extensive application in scientific and military surveil-

lance that often demands continuous and unattended monitor-
ing of physical phenomena for extended periods of time, 
without the possibility of replenishing the energy supply of 
nodes. Thus the effectiveness of a WSN depends on its effi-
ciency in using the limited energy supply. Addressing the 
need for energy efficiency is imperative for any sensor proto-
col stack.  

A typical sensor net comprises several tiny, resource scarce 
sensors, collaborating in their sensing, processing and com-
munication process to accomplish high-level application tasks. 
WSNs can be perceived as specialized ad-hoc networks [1] 
architecturally the same, but with severe resource constraints 
and unique application demands. Also, for a typical sensor 
network, short-range multi-hop radio communication provides 
considerable energy savings as compared to long-range com-
munication [2].  

WSNs are generally deployed to achieve a common appli-
cation task, where information supplied is the prime interest as 
compared to who sends the information. In that perspective, 
nodes need not be uniquely identified by network global ad-

dresses. A simple local neighborhood identification scheme 
(low-level addressing [3]) would suffice to diffuse informa-
tion hop-by-hop to the concerned application entities. In short, 
sensor networks are characterized by data-centric [4, 5] com-
munication, rather than global node-to-node communication.  
Accordingly the design considerations for sensor protocols 
differ from ad-hoc networks, whereby individual node per-
formance metrics (such as per-node throughput or fairness [1]) 
are insignificant as compared to collective network perform-
ance metrics (such as total network energy conserved or total 
application information delivered).  

To address such network characteristics and application de-
mands, several sensor applications rely on data flooding 
mechanisms to disseminate the required information through-
out the network and provide consistent data supply at all re-
gions of the deployed area. Flooding in dense multi-hop net-
works results in nodes forwarding considerable volumes of 
packets for other nodes in addition to communicating their 
own application data. Data-forwarding overhead might be-
come fatal for energy critical nodes, and the residual energy 
resources at weak nodes largely determine the connectivity 
and lifespan of a WSN. Fuzzy diffusion [6], a data-centric 
routing paradigm for application-aware sensor networks, pro-
posed distributed adaptations to alleviate the forwarding bur-
den on energy scarce nodes. This research proceeds with fur-
ther investigation on the initial scheme.  

A. Contributions 
The initial results [6] suggested the need for extreme con-

servative routing in sensor networks to achieve useful energy 
savings. However, a continual investigation is essential for a 
complete quantification of the protocol requirements and suit-
ability. In this paper we address two key points left open in 
the initial investigation of fuzzy diffusion.  

1. The influence of decision making strategies on the pro-
tocol performance, since the primary protocol logic is 
based on the energy-efficient routing decisions that filter 
out redundant network transmissions. We quantify the 
contribution of fuzzy decision-making by comparing it 
with a crisp logic alternative (explained in section 3).  

2. Performance analysis of fuzzy diffusion under different 
network and traffic settings to measure its suitability to 
different applications. The main purpose is to categorize 
the applications under which fuzzy diffusion would pro-
vide useful energy savings, since any data-centric proto-
col needs to be application matched [5]. 
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B. Related Work 
This work builds upon the initial research on fuzzy diffusion 

for distributed sensor networks [6]. Research in [5] formed the 
main motivation for quantifying the protocol performance 
under different application scenarios.  

Section II provides a brief review of fuzzy diffusion, fol-
lowed by a mathematical description of the decision tools ana-
lyzed in section III. The implementation details and perform-
ance analysis are provided in section IV. Finally, section V 
concludes with a summary of this investigation. 

 

II. FUZZY DIFFUSION REVIEW 
This section provides only a conceptual review of the fuzzy 
diffusion scheme for a basic understanding before presenting 
the new results. For interested readers, the introductory work 
in [6] presents a complete description.   

A. Fuzzy Diffusion 
Fuzzy Diffusion, an energy optimization scheme that embeds 

with any diffusion [5] algorithm, shifts the energy cost of data 
forwarding to non-critical nodes, attempting to maintain an 
energy-balance in the network. Critical nodes (those with low 
energy reserves and/or heavy application traffic) have reduced 
data forwarding burden and expend most of their power in 
sensing and communicating their sensor data, thus seeking to 
achieve net longevity. The proposed mechanism would be 
ideal for periodic surveillance applications, where sensors are 
densely deployed for sustained observation of physical events.  

Fuzzy diffusion addressed the challenge of explicitly incor-
porating the knowledge of relative neighbor energy reserves at 
the diffusion layer to enable energy-adaptive routing decisions 
and to reduce the amount of network radio transmissions. By 
comparison, directed diffusion [4] does not have explicit en-
ergy considerations. The initial research was performed with 
the two-phase-pull [5] variant of the family of diffusion algo-
rithms.  

In directed diffusion, nodes forwarding interests [4] implic-
itly agree to forward exploratory data, since it sets up gradi-
ents [4] that draw data towards the sinks. The positive rein-
forcement phase of diffusion subsequently enables flow of 
data at high rate from the source to sink over a single path. 
The initial interest flooding and gradient set-up costs are huge 
in diffusion networks; fuzzy diffusion developed optimiza-
tions to adaptively reduce these initial costs.   

Recognizing that the decision to forward an interest is an of-
fer to expend energy in support of that interest, fuzzy diffu-
sion informed the interest forwarding decision with knowl-
edge of energy reserves at a node and its neighbors. Network 
nodes individually decided whether to forward an received 
interest or not depending on their network energy status and 
pending traffic, since re-broadcasting interests implies will-
ingness to be in the data forwarding path from source to sink. 
The protocol methods created energy awareness in routing 
such that, at any instant in the network, the load of relaying 
data is assigned to nodes having relatively plentiful energy 
reserves, while still maintaining an energy-balance among the 

nodes. Fuzzy diffusion provides a conservative approach to 
routing for exploiting the inherent network redundancy.  

B. Design 
Two factors were used to represent node criticality;  

1) Relative Energy Level, 
minmax

min

EE
EE

REL node

−
−

= , representing 

the energy-criticality of a node.  
Where, 

Emax and Emin = Maximum and Minimum energy levels in     
the neighborhood  

Enode= Node’s residual energy level 
REL is an approximate rank function [7] that indicates the 

energy ranking of a node among its neighbors. Higher the 
REL, lesser is the energy-criticality of a node. Nodes ex-
change energy information by piggybacking their current en-
ergy levels on interest and data messages (energy value can 
also be included as one of the attribute values), and each node 
maintains a cache for storing neighbor residual energy levels. 
The implementation complexity is negligible.  

2) Traffic Intensity, 
nodetheofsizequeueMaximum

queuesnodeinTrafficTI '
= , 

representing the traffic burden on a node. 
Lower the TI, lesser the data-criticality in a node. The 

queue size includes the application traffic and also the traffic 
that a node has already committed to forwarding.  

Both REL and TI lie in the range [0-1] and jointly define the 
criticality of a node. For example, a node with low REL and 
high TI is a critical node, since the remaining energy resources 
might only be sufficient for the large pending traffic and it 
may therefore be appropriate to reject any further forwarding 
requests.  

Fuzzy membership functions [8] were used to map the com-
puted parameter values to three discrete fuzzy values; low, 
medium and high. A Mamdani rule [8] base was then estab-
lished to express all possible parameter associations and the 
corresponding fuzzy decisions. The association matrix is re-
peated in table 1.  

TABLE 1 
RULE TABLE: FUZZY ASSOCIATIONS FOR INTEREST FORWARD 
          TI 
REL 

Low Moderate High 

Low p 0 0 
Medium 1 p 0 
High 1 1 p 

In the table, p represents the line of criticality; the initial ex-
periments were done with three degrees of conservativeness: p 
= {0, 0.5, 1}. Finally the probability of interest forward (the 
final response) was computed using the centroid method [8]. 
Documentation in [6] provides a complete explanation of the 
logic design, with all mathematical and pictorial depictions.   

C. Sample Result 
Fuzzy diffusion was implemented in ns2 [9] and its per-

formance was compared with directed diffusion. Figure 1 
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shows a sample performance result from the introductory 
work [6], where an approximately 15-30% increase in simu-
lated network life time was noticed in fuzzy diffusion.  

0

500

1000

1500

2000

0 50 100 150 200 250 300 350 400 450

Simulation time (s)

To
ta

l N
et

w
or

k-
E

ne
rg

y 
R

em
ai

ni
ng

 
(J

)

Directed Diffusion

Fuzzy Diffusion (p=1)

Fuzzy Diffusion (p=0.5)

Fuzzy Diffusion (p=0)

 
Figure 1.  Residual Network Energy 

The results clearly substantiated the need for diffusion 
nodes to be highly conservative when there are abundant al-
ternate paths, since only one needs to be reinforced for con-
tributing to the application task. Fuzzy diffusion exploits the 
fact that in a dense, high traffic network not every node needs 
to participate in data communication to achieve the required 
level of performance. Significant routing redundancy is inher-
ent, which could be exploited to conserve energy and save 
critical nodes.   

D. Fuzzy Diffusion Analysis 
In this paper we extend the initial exploration on fuzzy dif-

fusion to experimentally verify the following hypotheses:  

Research hypothesis 1: Decision making tools play a signifi-
cant role in fuzzy diffusion performance. Methods that con-
sider network parameter interdependencies and provide grad-
ual state transitions yield better performance. .    

Research hypothesis 2: Fuzzy diffusion would be appropriate 
only in dense, high traffic sensor applications characterized 
with abundant traffic and routing redundancies, wherein fuzzy 
forwarding decisions would make an impact on the network 
performance. 

In the performance quantification of fuzzy decisions, we 
use a straightforward crisp decision making (explained in sec-
tion III.B) as the comparison baseline. For convenience, this 
paper refers the crisp decision strategy embedded diffusion 
algorithm as crisp diffusion.  

Analyzing the network scenarios under which fuzzy diffu-
sion would be applicable is important, since any application-
aware protocol needs to be matched with the application in 
which it would be most effective. Diffusion experiments in [4, 
5] state that; when sensor network protocols are designed to 
suit and exploit application characteristics, a generalized 
solution (single protocol for all applications) does not exist. A 
family of protocols needs to be designed, and experimental 
quantification of their performances in different applications 
should be provided. Employing an application-specific proto-

col in mismatched scenarios can considerably degrade the 
network performance, since the protocol methods might be 
rendered ineffective due to the lack of application characteris-
tics that the protocol was originally designed to exploit. 

 

III. DECISION STRATEGIES 
In this section we provide a simple mathematical characteriza-
tion of the decision making tools employed in this investiga-
tion. The primary goal is to analyze the efficiency of interest 
forwarding decisions provided by the fuzzy and crisp logics, 
and so the significant measure to quantify would be the final 
response (probability of interest forward, Pf) distribution, for 
each of these algorithms.  

A. Fuzzy Decision Logic 
Figure 2 depicts the behavior of the fuzzy algorithm (distri-

bution of Pf as a function of REL and TI) for p value 0.5. The 
pattern of distribution will be the same for any choice of p.    
 

 
Figure 2.  Pf Distribution for Fuzzy Logic 

The distribution can be easily viewed in three fuzzy seg-
ments of criticality; low, medium and high. A response of zero 
for high degree of criticality, a response of one for low degree 
of criticality and a linear combinational response for medium 
criticality. The linear region represents a gradual transition 
between the high and low regions. The fuzzy association table 
takes into consideration all possible parameter interactions, 
and the centroid method of response estimation computes the 
centroid of the area covered by the criticality sets (low, me-
dium, high) for each parameter. Fuzzy logic collectively pro-
vides smooth state transitions as the parameters vary.  

The parameters REL and TI jointly define node criticality, 
and the distribution clearly shows that fuzzy logic takes into 
consideration the parameter independencies. In a real net-
working environments multi-parameter correlation might be 
extremely significant. 

For example, a node with low REL can still be considered a 
non-critical node, if its TI is zero. Since an empty queue sug-
gests that the node has not sourced data or committed to other 
data forwarding, with high probability, it could spend its re-
maining energy resources on data forwarding to satisfy the 
application task. In the graph, for REL and TI values at the 
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low end (around zero), the probability of forwarding an inter-
est is 0.5, providing a rational thinking of the network state. 
This decision making is intended to mimic human thinking 
process and not be purely robotic. 

B. Crisp Decision Logic 
Crisp logic would provide a less complicated binary rule for 

routing decisions. “Crisp decision making” uses computed 
parameter values directly to estimate node criticality, rather 
than mapping them to fuzzy logical values. The probability of 
forwarding an interest is estimated from a binary rule base (0 
or 1) based on a simple linear combination of the node pa-
rameters rather than any compound equations as in the cen-
troid method. One possible method of crisp decision making is 
described below. 
The Degree of Criticality (DoC) can be estimated as 

DoC = 1- (α * REL + β * (1-TI)) 

Where α and β are the weights (in range [0-1]) associated with 
each parameter, subject to α + β = 1. For this investigation we 
consider α = β = 0.5, assuming that REL and TI are equally 
significant in defining the criticality of a node. 

Final decision could be computed from a crisp rule base as: 

If (DoC <= 0.5) Then Pf = 1          
Else If (DoC > 0.5) Then Pf = 0 

The distribution of Pf for the crisp decision logic is shown 
in figure 3.  

 
Figure 3.  Pf Distribution for Crisp Logic 

The distribution exhibits a step curve, where the final re-
sponse (probability of forwarding) switches from 1 to 0 or 
vice-versa, at a particular threshold of the input parameter 
combination. The behavior does not provide a gradual transi-
tion segment between the two extreme responses as provided 
by fuzzy algorithm. The smooth transitions in fuzzy logic 
were made possible by the membership function mapping of 
the entire range of parameter values into low, medium and/or 
high logical values. Since crisp does not consider any parame-
ter interdependencies, it does not provide any modulated deci-
sions. 

C. Discussion 
Naturally crisp decisions involve less processing, but sensor 

nodes generally prefer to perform significant local processing 

if they can thereby reduce packet transmissions, since for 
short range WSNs, data processing is much cheaper than radio 
communications.  

Pottie and Kaiser [2] show that energy consumed in trans-
mitting a 1 kilobit packet over 100m is approximately the 
same as processing 3 MIPS on prototype wireless sensor 
nodes (The radio/processor power draw specifications for the 
popular MICA sensor motes can be referred from [10]). 
Therefore if the fuzzy decisions prove to be significantly effi-
cient in making reliable routing estimates, then the amount 
additional processing incurred by would be justified. 

This section defined the behavior of the two decision 
tools. Several other tools in the same order of complexity as 
fuzzy logic might provide similar performance, but the pur-
pose of this analysis is to compare fuzzy logic against the 
simplest form of decision making (1 or 0), and verify if there 
is perceivable performance difference. Only a significant im-
provement would justify the use of the fuzzy mechanism (or 
another of similar complexity). 

IV. PERFORMANCE ANALYSIS 
For the purpose of experimental quantification of the stated 
hypotheses (in section II.D), this investigation provides analy-
sis under the following network settings: 
1. Performance evaluation of crisp diffusion under the same 

network setup that was used to analyze fuzzy diffusion in 
[6]. The crisp decision making algorithm was embedded 
into ns-2 [9], and the simulation was configured with the 
same parameter values as in [6] (repeated in Table 2 for 
convenience). Figure 4 shows a simplified structure of the 
fuzzy and crisp decision diffusion modules. 

TABLE 2 
 SIMULATION PARAMETERS 

Number of nodes 100, scattered uniformly in 
the field 

Topography 1400m by 1400m 
large target area of surveil-
lance 

Radio range of nodes 250m 
Channel bandwidth 1.6 Mb/s 
Simulation run time 600 seconds 
Initial energy of nodes 20 Joules 
Transmission power consump-
tion 

660 mW 

Reception power consumption 395 mW 
Idle power consumption 39 mW 
Number of sources and sinks 10 
Event (data message) size 64 bytes    
Interest size 36 bytes 
Interest generation rate 1 per 30 seconds 
Event rates (exploratory and 
high) 

Same as in [4] 

 
2. Analysis of fuzzy diffusion under low-traffic network 

scenarios to measure its suitability to such applications. 
The experiments were repeated with the fuzzy controller 
in one-phase-pull diffusion application (versus the origi-
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nal two-phase pull) under two scenarios: 1) the same con-
figuration setup (table 2) and 2) just one sink to signifi-
cantly reduce network traffic.  

 
Figure 4.  Rule Base in Diffusion 

The sub-sections A and B present the results of experiments 
of 1 and 2 respectively. 

A. Fuzzy Logic Performance 
In this section we evaluate the choice of fuzzy logic as a de-

cision making tool independently from the introduction of 
adaptive forwarding decisions in the diffusion process. Fig-
ures 5, 6 and 7 compare the performances of fuzzy and crisp 
diffusion schemes. Fuzzy diffusion with p=0 (highest degree 
of conservativeness) was chosen, since the initial results [6] 
proved that extreme conservation was indeed the best per-
forming gradient for high traffic applications. The results of 
fuzzy and directed diffusion are repeated from [6]. Crisp dif-
fusion, as mentioned before, was run with the identical simu-
lation setup. The performance results were obtained with 90% 
confidence intervals [7]. The graphs should be viewed as a 
relative comparison of crisp and fuzzy diffusion with directed 
diffusion as the bench mark. 

The results show substantially increased performance in 
both energy savings and data delivery performance for fuzzy 
diffusion as compared to crisp diffusion. In most cases the 
confidence intervals of directed and crisp diffusion schemes 
overlap, implying that adaptive forwarding, without fuzzy 
logic, achieves no significant performance improvement from 
directed diffusion. 

 The results suggest that sharp decision transitions in node 
criticality estimations may not be appropriate for adaptive 

routing decisions where multiple parameter inter-
dependencies need to be taken into consideration. For exam-
ple, a degree of 0.49 should not be considered strictly non-
critical when 0.51 is estimated as critical. We need more nu-
anced assessments that enable graceful node status transitions 
and fewer oscillations in the decisions. 
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Figure 5.  First Dying Node’s Energy Profile 
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Figure 6.  Residual Network Energy 
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Figure 7.  Information Delivery Efficiency 

Fuzzy decision strategy provides a simple, yet efficient, in-
ter-dependency modeling. The analysis suggests that the use 
of fuzzy-like decision tools to provide reliable estimates of the 
node criticality may extract better performance than binary 
decisions. Efficient resource-adaptive decisions contribute to 
significant reduction of network radio transmissions; thereby 
prolonging net lifetime and connectivity. 

B. Fuzzy Diffusion Applicability  
As mentioned before, since fuzzy diffusion is an applica-

tion-aware (data centric) routing protocol, it is imperative to 
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quantify its performance under different application settings. 
The initial investigation [6] selected the two-phase-pull [5] 
diffusion algorithm, which generated abundant traffic during 
the simulation run (due to data flooding), which represented 
high traffic application scenarios. The conservative approach 
by fuzzy diffusion proved extremely energy efficient in such 
networks, since reducing redundant transmissions signifi-
cantly amortized network traffic. 

 
One-Phase-Pull Diffusion 

One-phase-pull [5] is a source-based reinforcement algo-
rithm that eliminates the entire phase of exploratory data 
flooding from the two-phase-pull variant. The sinks flood in-
terest throughout the network, establishing gradients for data 
dissemination from source to sink. The source nodes instead 
of flooding exploratory data (as in two-phase-pull), choose the 
lowest latency next-hop gradient and immediately send high-
rate data. This is repeated at every hop until the sink node is 
reached. Thus the reinforcement phase is completely elimi-
nated and a lowest latency path is explicitly chosen from 
source-to-sink direction. The main advantage with two-phase-
pull is that it estimates the best latency path based on data 
flood on both directions (interest, exploratory data), and so is 
robust against asymmetrical links. One-phase-pull trades off 
this advantage to eliminate the excessive transmission over-
head due to the exploratory data flooding.  

One-phase-pull would be ideal for applications that can 
compromise link quality, but place strict constraints on traffic 
generated during path establishment. For example, in teleme-
try or military sensor networks deployed with varied interests 
and rapidly changing requirements, distinct queries might be 
issued frequently. In such cases, excessive flooding on every 
query request might be expensive. Alternatively two-phase-
pull could be employed in monitoring applications where in-
terests are sent at long intervals (requirements do not change 
rapidly) and the task duration is long enough to amortize the 
initial flooding cost. For such cases the better link quality pro-
vided by two-phase-pull is preferred.   

 
 Fuzzy Decisions in One-Phase-Pull 

In large diffusion networks, one-phase-pull represents a 
packet reduction optimization on two-phase-pull, since flood-
ing is drastically reduced.  It is of interest to embed the fuzzy 
controller into one-phase-pull to see the amount of perform-
ance difference and the impact of reducing network transmis-
sions in a reduced traffic setup. Figures 8 and 9 show the re-
sults of fuzzy diffusion embedded in one-phase pull. 

As expected, extreme conservativeness (p = 0) achieves the 
maximum network lifetime as nodes decline data forwarding 
with high probability. A maximum of only 11% increase in 
simulated net lifetime is achieved as compared to a maximum 
of 30% improvement [6] when fuzzy diffusion was running 
over two-phase-pull. This suggests that the magnitude of sav-
ings achieved by fuzzy diffusion may fall with the network 
traffic, since in lighter traffic scenarios a fuzzy algorithm that 
bases its energy conserving logic on reducing redundant trans-
missions is less effective. The same might hold true in sparse 
networks, since due to low routing redundancy, the amount of 

traffic generated, and the number of alternative gradients, 
would be less. 
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Figure 8.  Residual Network Energy 
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Figure 9.  Information Delivery Efficiency 

Another important behavior seen in these experiments is 
that extreme conservation actually degrades data delivery per-
formance, unlike the results in [6], where significant im-
provement was seen. Optimal path selection (best latency 
path) is an inherent feature and strength of diffusion algo-
rithms, which implicitly achieves considerable energy savings 
[4]. In fuzzy diffusion, nodes independently decline interests 
in the interest of conserving energy and therefore optimal data 
paths are not guaranteed. In such cases, the amount lifetime 
improvement achieved, and the volume of high-rate data in-
formation supplied during the excess network lifetime should 
be high enough to completely overshadow the performance 
degradation due to sub-optimal path possibilities.  

The p = 0.5 case matched the data delivery performance of 
one-phase-pull diffusion, since reducing the conservation de-
gree reduces the probability of sub-optimal paths. However, 
the energy graph suggests that a degree of p = 0.5 is not 
enough to achieve useful energy savings. Improvement in 
lifetime, while maintaining information delivery efficiency is 
the main goal of fuzzy diffusion, and insignificant energy con-
servation will not substantiate the use of fuzzy algorithm.  

The p =1 results are ignored, since the energy performance 
is much worse. The results clearly quantify that in one-phase-
pull, only extreme conservation provided perceivable im-
provement in life time, but that too was not sufficient enough 
to supply high volume of data to overcome the degradation 
due to sub-optimal path formation.  
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To substantiate the claim further, same experiments were 
repeated with only one sink in the network. This approxi-
mately reduces the network traffic by a factor of ten as com-
pared to the previous scenario. Figure 10 summarizes the per-
formance results under the discussed network settings.  
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Figure 10.  Performance Summary 

As we can see, with one sink the lifetime improvement is 
further reduced. The performance is more than double with 
two-phase-pull application that generates heavy traffic as 
compared to other two cases, implying that: fuzzy diffusion 
will be ideal for high event-rate, dense sensor applications 
(ex. periodic temperature monitoring), and that its effective-
ness reduces proportionally with reducing network traffic. 
 

V. DISCUSSION 
This paper presented two significant results from the progress-
ing investigation on fuzzy diffusion [6]; 1) Substantiating the 
contribution of fuzzy logic in making graceful routing deci-
sions and 2) Categorizing the applications that would benefit 
from fuzzy diffusion, and those that would not.  
 The results showed that fuzzy-logic provided rational esti-
mates of network status, and was considerably better than 
sharp decisions in modeling the resource distribution of sensor 
networks. The investigation does not claim that fuzzy logic 
would be the superior decision making tool, but rather sug-
gests that any decision tool chosen should incorporate parame-
ter interdependencies for estimating node criticality. The deci-
sion algorithm should provide means for smooth state transi-
tions and reliable final estimations. Fuzzy logic is one such 
tool.    
 Finally the application quantification clearly stated that 
adaptively reducing network radio transmissions, as in fuzzy 
diffusion, would be appropriate only in dense, high traffic 
sensor applications, where the volume of packets generated in 
the network and the abundant routing redundancies justify the 
use of amortizing radio transmission costs. The amount of 
energy savings reduces proportionally as the network traffic 
reduces, nullifying the significance of fuzzy adaptations.  

A. Future Work 
This investigation motivates the need to explore energy-

aware strategies that will suit sparse or low traffic sensor ap-

plications. Though the work would be orthogonal to the cur-
rent investigation, fuzzy based adaptations that might be ap-
plicable for such networks would provide a complete family 
of fuzzy-diffusion algorithms matched for different WSNs. 

Fuzzy diffusion achieves energy efficiency in the query for-
ward direction (interest dissemination direction from sink to 
source). Additionally, in the data-flow direction, there is a 
choice among multiple gradients at every hop (several non-
critical nodes forward interests forming multiple gradients at 
each node), and the present diffusion schemes chose the low-
est latency gradient to reinforce. Taking energy into consid-
eration along with latency in choosing a neighbor gradient 
might improve net lifetime further. Fuzzy logic can be incor-
porated into the positive reinforcement phase of diffusion such 
that, at any instant, nodes with relatively high energy reserves 
could be reinforced to send data at high rate. Then we might 
have an optimal path from source to sink that represents an 
efficient trade-off between energy efficiency and latency.  

Another significant realization during this research was the 
need for sensor oriented metrics. Though the energy and data 
delivery measures (used here) provide understandable per-
formance estimates, metrics exclusively developed for appli-
cation-aware sensor networks might be more intuitive. For 
example, a metric that quantitatively maps the amount of data 
delivered to the actual amount of distinct application informa-
tion supplied would be useful for defining the exact data-
centric performance. Further work on this investigation would 
try to develop such metrics and quantify fuzzy diffusion per-
formance more precisely. 
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