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ABSTRACT 

Distributed Sensor Networks (DSNs) are an emerging 
technology, recently finding extensive application in scien-
tific and military surveillance. DSNs operate under severe 
energy constraints and are largely characterized by short-
range multi-hop radio communications, which drives the 
need for energy-efficient routing schemes in such net-
works. Directed diffusion, a data-centric routing approach 
for application-aware DSNs has been shown to outperform 
traditional wireless routing schemes and achieves reason-
able energy conservation through data-aggregation. How-
ever, directed diffusion ignores the energy level of sensor 
nodes, and we believe that incorporating the knowledge of 
relative energy reserves into the routing algorithm will 
improve energy efficiency and significantly prolong net-
work lifetime. In this paper, we introduce fuzzy diffusion, 
an energy optimization on the directed diffusion scheme, 
and quantify its energy performance using ns-2 simula-
tions. 
 

1.   INTRODUCTION 
A Distributed Sensor network (DSN) comprises a multi-
tude of tiny nodes, collaborating in their sensing, process-
ing and communication process to accomplish high-level 
application tasks. DSNs provide persistent, unattended 
monitoring of natural and man-made phenomena in appli-
cations such as homeland security, law enforcement, mili-
tary reconnaissance, space exploration, environmental 
monitoring, and early warning of natural disasters. These 
applications often demand continuous monitoring of physi-
cal phenomena for extended periods of time without the 
possibility of replenishing the energy supply at each node. 
In some applications, a renewable energy source is pro-
vided (e.g., a solar panel) but the power available is strictly 
limited. Thus the effectiveness of a DSN depends on its 
efficiency in using the limited energy supply.   

A typical sensor network (for monitoring applications) 
consists of hundreds of tiny, short-range, energy con-
strained, wireless sensors deployed densely in the target 
area to sense and communicate information. As shown in 
[1] short-range multi-hop sensor communication provides 
considerable energy savings as compared to long-range 
communication and this signifies the importance of en-
ergy-adaptive routing schemes for DSNs. Directed diffu-
sion, a data-centric routing paradigm for application-aware 

sensor networks was proposed and evaluated in [2]. The 
results show (from sensor perspective) that directed diffu-
sion easily outperforms traditional data disseminations 
schemes (such as flooding and omniscient multicast), and 
is fairly energy-efficient, achieved through optimal path 
selection and data aggregation. The initial research on dif-
fusion schemes [2, 3] leads us to further exploration, with 
a main objective of introducing adaptive behavior based on 
energy awareness. One approach to this is to explicitly 
incorporate the knowledge of relative energy reserves in 
the network into the routing layer to enable energy-
adaptive routing decisions (directed diffusion does not 
consider the energy level of sensor nodes).  

In a multi-hop sensor network, nodes forward a con-
siderable volume of packets for other nodes apart from 
communicating their own application data. Data-
forwarding overhead could be fatal for low energy nodes, 
and the residual energy resources at the weak nodes 
largely determine the connectivity and lifespan of a DSN. 
With this motivation, we propose an energy optimization 
that can be incorporated into existing diffusion schemes: 
Fuzzy Diffusion shifts the energy cost of data forwarding 
to non-critical nodes (nodes having high residual energy or 
less data), while still achieving an energy-balance in the 
network. Critical nodes (low energy nodes with heavy traf-
fic) have reduced data forwarding burden and expend most 
of their power in sensing and communicating their sensor 
data, thus seeking to achieve net longevity. Fuzzy diffu-
sion will be ideal for surveillance applications, where sen-
sor nodes are densely deployed for sustained observation 
of physical events.  

 
1.1  Related Work 

This work builds upon the directed diffusion paradigm for 
distributed coordination in sensor networks, developed in 
[2] and further optimized in [3]. We try to provide explicit 
energy-adaptations to the existing diffusion schemes for 
prolonging the network lifetime. We propose to incorpo-
rate energy awareness using some of our previous work in 
fuzzy routing for mobile ad-hoc networks [4, 5], where the 
routing algorithm employs fuzzy logic to allocate route 
resources based on message priority and network conges-
tion status. In this work we apply the idea in [4] to sensor 
networks, with the logic-design parameters and evaluation 
metrics chosen appropriately for sensor routing schemes.  
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GEAR [6], an energy-aware routing scheme for sensor 
networks explicitly uses node-energy and location infor-
mation to direct the query flood towards target regions at 
minimal cost. It applies an energy adaptive neighbor selec-
tion algorithm to route the packets and reduce unnecessary 
communication, thereby achieving significant energy con-
servation. In this work we focus on improving the energy-
efficiency of diffusion sensor networks that uses applica-
tion-specific information, rather than node location or 
identity information, to reduce communication costs.  
 

2.   FUZZY DIFFUSION 
In this section we provide a brief overview of the directed 
diffusion scheme and explain why fuzzy diffusion is im-
portant, followed by a detailed introduction to the fuzzy 
diffusion protocol. For interested readers, detailed explana-
tion and performance analysis of directed diffusion can be 
found in [2, 3]. 
 
2.1  Why Fuzzy Diffusion? 

Directed diffusion is a data-centric routing scheme de-
signed specifically for wireless sensor applications. In dif-
fusion, data is named using attribute-value pairs and dis-
seminated throughout the network. Data is drawn towards 
interested nodes, which is completely unlike the IP mode 
of communication where nodes are uniquely identified by 
their addresses. Diffusion gets the name data-centric, in the 
sense that all communication is for named-data.  

Current research in [3] discusses a family of diffusion 
algorithms, each variant optimized for a specific applica-
tion. The early work on directed diffusion [2] is now being 
referred to as the two-phase-pull diffusion algorithm. The 
fuzzy logic introduced here will embed with any diffusion 
algorithm and we chose the two-phase-pull scheme, since 
it generally suits periodic monitoring applications (which 
are of interest here) wherein the task duration is long 
enough to amortize the initial gradient set-up cost. Hereaf-
ter, directed diffusion refers to the two-phase-pull variant 
of the family of algorithms.  

In directed diffusion, querying nodes (sinks) dissemi-
nate ‘interest’ throughout the network, setting up gradients 
to draw events (named data) towards the sink. A node re-
ceiving an interest re-broadcasts it if it cannot accomplish 
the query task (providing the requested data). This way 
interests get forwarded towards source nodes that send 
sensor data back (at slow exploratory rate) to the sink 
nodes for the entire task duration. The positive reinforce-
ment phase of diffusion subsequently enables flow of data 
at high rate from the source to sink.  

Nodes forwarding interests implicitly agree to forward 
data, since it sets up gradients that draw data towards the 
sinks. The gradient set-up costs are huge in diffusion due 
to the interest flood, and schemes to reduce this initial cost 

are mandatory in diffusion. In-network processing is gen-
erally used to suppress duplicate interests and redundant 
broadcasts. Location information can also be used to direct 
the interest flood, avoiding flooding in non-target regions, 
thereby providing considerable energy savings. However 
in diffusion, nodes, irrespective of their target region can 
individually decide whether or not to forward the interest 
based upon their network status, to achieve net longevity.  
 
2.2  Fuzzy Diffusion Design 

Recognizing that the decision to forward an interest is an 
offer to expend energy in support of that interest, we seek 
to inform the interest forwarding decision with knowledge 
of energy reserves at the node and its neighbors. The goal 
of fuzzy diffusion is to create energy awareness in routing 
such that, at any instant in the network, the load of relay-
ing data is assigned to nodes having relatively plentiful 
energy reserves, while still maintaining an energy-balance 
among the nodes.   
 There are several mathematical tools for decision mak-
ing in the literature. We chose fuzzy logic, as it is simple, 
exclusively designed for decision making with multiple 
input parameters and it also makes an efficient trade-off 
between significance and precision. 

Each node in fuzzy diffusion employs fuzzy logic for 
computing the interest forwarding probability based on its 
network energy status and pending traffic in queue. These 
two parameters represent the input fuzzy variables that are 
used by the fuzzy controller to estimate the criticality of a 
node, which determines the probability of interest forward-
ing. In a crisp sense, interests are suppressed with high 
probability at critical nodes, relieving them of data for-
warding burden. This shifts the energy cost of data relay-
ing to non-critical nodes, which should provide useful en-
ergy savings in the network.  
 
2.2.1  Fuzzy Input Variables 

The two linguistic input variables used by the fuzzy con-
troller are:  

Relative Energy Level (REL) of a node, defined as the 
residual energy status of a node with respect to its 
neighborhood. This factor represents a node’s energy-
criticality and is given by; 

minmax

min

EE
EE

REL node

−
−

=      

Where, 
Emax and Emin = Maximum and Minimum energy levels in 
the neighborhood  
Enode= Node’s residual energy level 
The REL definition is an approximate rank function [7] 
that indicates the energy ranking of a node among its 
neighbors. Higher the REL, lesser is the energy-criticality 
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of a node. Nodes exchange energy information by piggy-
backing their current energy levels along with interest and 
data messages (energy value can also be included as one of 
the attribute values), and each node maintains a cache for 
storing neighbor residual energy levels. The implementa-
tion complexity is negligible.  

Traffic Intensity (TI) of a node, defined as the amount 
of traffic pending in a node’s queue. This includes the ap-
plication traffic and also the traffic that a node has already 
committed to forwarding. This factor represents the traffic 
burden on a node and is given by;  

nodetheofSizeQueueMaximum
QueuesnodeinTrafficTI '

=  

Lower the TI, lesser the load in a node. 
Both REL and TI lie in the range [0-1] and jointly de-

fine the criticality of a node. For example, a node with low 
REL and high TI is a critical node, since the remaining en-
ergy resources might only be sufficient for the large pend-
ing traffic and it may therefore be appropriate to reject any 
further forwarding requests.  

Critical nodes are highly conservative in accepting 
new interests, and conserve their energy to communicate 
locally produced application data, thereby maintaining 
network coverage and connectivity for longer periods of 
time. Fuzzy diffusion does not degrade the information 
flow even though some critical intermediate nodes decline 
to participate in data communication, because nodes with 
relatively higher energy reserves in a neighborhood still 
communicate data (one being high rate path) and contrib-
ute to the application task. The advantage of using REL as 
energy parameter is that it describes a node’s energy status 
with respect to the network.  

During the conservation period (period during which a 
node’s status is critical and interests are rejected with high 
probability), the REL of a critical node increases due to the 
energy drain in other active nodes in the network (critical 
nodes still receive data from neighbors and hence the cur-
rent energy information) during that period. This gradually 
shifts the critical node to normality (properly reflecting the 
evolving network energy status) and therefore increases 
the probability of accepting interests. In fuzzy diffusion 
environment, REL is reasonably resistant to outliers [7] 
due to the energy balance among the network nodes, 
though incorporating dispersion parameters into the REL 
computation will be an interesting follow up to this intro-
ductory work.  

However, REL alone will not be sufficient to define 
the node criticality, since if a low-energy node does not 
have any pending traffic, it might as well forward data and 
contribute to the application task. Thus REL and TI are 
combined to reflect a node’s state more richly and form the 
core decision parameters of the fuzzy controller.     

 2.2.2  Fuzzy logic for interest forward 

The input variables are represented as discrete fuzzy val-
ues with a level of resolution defined by the following 
fuzzy membership functions (The graphical representation 
of membership functions are shown in figure 1):  
 REL Membership function associates REL with fuzzy 
energy values; low, medium and high. Degree of Member-
ship (DOM) represents the magnitude of participation of a 
node’s energy level in a fuzzy set. REL value is plotted on 
the x-axis and is projected vertically to the upper set-
boundary lines to determine the DOM with each set. 
 
 
 
 
 
 
 
 
 

Figure 1.   Membership Functions 
 

Similarly the TI membership function, maps the TI of 
a node to three discrete fuzzy values; low, moderate and 
high. Estimating the DOM of a variable with each fuzzy 
set identifies the degree of node criticality and a simple 
straight line fit can be used to compute the DOM values 
corresponding to REL and TI values.  

The fuzzy decision, whether or not to forward an in-
terest, is computed using a rule base. The decision is ex-
pressed as a probability of interest forwarding, pf. The 
rules are represented in Mamdani form [8] as:   

IF REL is a and TI is b, THEN Pf is c 

where, a, b and c are the linguistic values of the linguistic 
variables REL, TI and Pf.  The above logic rule can be 
called a fuzzy association and Table 1 shows all the possi-
ble associations from the given set of fuzzy values defined 
by the membership sets.    
 
Table 1. Rule Table: Fuzzy associations for interest forward 

          TI 

REL 

Low Moderate High 

Low p 0 0 

Medium 1 p 0 

High 1 1 p 
 
The values inside the table are the Pf (fuzzy action) corre-
sponding to the fuzzy variable associations. p is a probabil-
ity representing the line of criticality (its value represents 
the degree of conservativeness), above which a node 
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moves towards critical stage and has zero probability of 
forwarding an interest (extremely conservative). p is made 
tunable in this initial research for identifying the optimal 
value that can obtain an efficient trade-off between energy 
conservation and attainable throughput.  
 
2.2.3  Final Fuzzy Response 

For a given value of REL and TI, the corresponding DOM 
values with each fuzzy set are computed. All possible as-
sociations between the fuzzy variables are listed and their 
association weight is computed using the max-min infer-
ence method. Then the fuzzy action corresponding to each 
association is obtained from the rule table. Finally the 
fuzzy response (Pf) is computed using the centroid method 
[8]:  

       Probability of interest forward,
i

ii
f W

ZW
P

∑
∑=  

Wi = Weight of a rule (association) i = min (DOMi with TI  
         fuzzy sets, DOMi with REL fuzzy sets) 
Zi = Fuzzy action for the rule i (from rule table) 
 

3.   IMPLEMENTATION 

The entire fuzzy algorithm described in section 2 can be 
considered to be a fuzzy-controller that can be embedded 
into any diffusion algorithm. The controller can be in-
voked when we receive an interest to compute the prob-
ability of forwarding the interest. Figure 2 shows a simpli-
fied structure where the directed and fuzzy diffusion func-
tionalities differ. U(0,1) is a uniform number, generated 
between 0 and 1 to implement the probabilistic interest 
forwarding.   

We implemented fuzzy diffusion in ns-2 [9] simulator 
(fuzzy logic was embedded into the two phase pull filter 
application) and obtained performance results for compari-
son with directed diffusion. The simulations were run with 
parameter values chosen for a typical monitoring applica-
tion, and also in accordance with the earlier diffusion re-
search [2, 3] for a consistent comparison. Table 2 lists the 
chosen configuration parameters.  

Sink nodes generate interests (specifying the monitor-
ing rate and duration) and disseminate it throughout the 
network. Source nodes in the simulation periodically gen-
erate events (monitor information) and communicate them 
to sink nodes throughout the task duration. We modified 
the messages to include the node’s current energy level 
and all nodes maintain an energy table that lists the col-
lected neighborhood energy information. 

The metrics were chosen to analyze the energy effi-
ciency of fuzzy diffusion, and also its potential perform-
ance degradation due to the conservative approach. We 
examine the energy profile (residual energy versus time) of 
the first node to die, the overall residual energy in the net-

work, and the volume of events reported by directed diffu-
sion and several variations of fuzzy diffusion. 

The simulations for fuzzy diffusion were run with 
three values of p (low p implies highly conservative); 0, 
0.5 and 1. The performance results were obtained with 
90% confidence intervals. 

 

 
Figure 2.  Interest processing structure 

 

Table 2. Simulation Parameters 

Number of nodes 100, scattered uniformly 
in the field 

Topography 1400m by 1400m 
large target area of sur-
veillance 

Radio range of nodes 250m 
Channel bandwidth 1.6 Mb/s 
Simulation run time 600 seconds 
Initial energy of nodes 20 Joules 
Transmission power consumption 660 mW 
Reception power consumption 395 mW 
Idle power consumption 39 mW 
Number of sources and sinks 10 
Event (data message) size 64 bytes    
Interest size 36 bytes 
Interest generation rate 1 per 30 seconds 
Event rates (exploratory and high) Same as in [1] 

 
3.1  First-dying node 

Figure 3 shows the energy profile of the first-dying node in 
the network for all the diffusion protocols. This graph de-
picts the energy utilization of the diffusion algorithms. The 
first dying node was chosen, since it is the weakest node in 
the network at the simulation instant, and how these proto-
cols treat the weakest link is significant for prolonging 
network lifetime and connectivity.  
 As expected, directed diffusion has almost linear en-
ergy drain even for the weakest node, confirming no ex-
plicit energy adaptiveness at the node level. The energy 
conservation in fuzzy diffusion increases as the value of p 
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is decreased, since the probability of interest forwarding 
decreases as p decreases (from fuzzy association table). 
Nodes become more conservative as we decrease p and 
hence the node lifetime is prolonged. It is also interesting 
to see that for p = 0 the curve is linear after certain amount 
of simulation run time. This is because once the weakest 
node has low REL it never accepts interests (Pf is zero for 
all TI) and the power drain is only due to packet reception, 
idle listening and the data that this node sources (if it’s a 
source or sink). 
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Figure 3.  First dying node’s energy profile 

  

0

500

1000

1500

2000

0 50 100 150 200 250 300 350 400 450

Simulation time (s)

To
ta

l N
et

w
or

k-
En

er
gy

 R
em

ai
ni

ng
 

(J
)

Directed Diffusion

Fuzzy Diffusion (p=1)

Fuzzy Diffusion (p=0.5)

Fuzzy Diffusion (p=0)

 

0

20

40

60

80

100

250 300 350 400 450

Simulation time (s)

To
ta

l N
et

w
or

k-
 E

ne
rg

y 
R

em
ai

ni
ng

 
(J

)

 
Figure 4.  Residual Network Energy 

3.2  Residual energy 

Network energy was extracted from all nodes every 50 sec 
during the simulation for the purpose of comparing total 
residual energy in the network versus time for the routing 
protocols, which are plotted in Figure 4. The results to-
wards the end of simulation are zoomed to clearly depict 
the extended network life time. Certain results with p = 0 
in the zoomed version clearly exceed the graph window, 
but is still included to show the amount of performance 
difference. 
 It is clear from the bar-graph that the network life time 
is prolonged for fuzzy diffusion; in this specific simulation 
scenario it was extended by 50-100 simulation seconds, 
which is about 8-17% increase in simulation run time as 
compared to directed diffusion. The performance im-
provement might be much higher with optimized fuzzy 
parameters and configuration parameters, which is subject 
to further research. The net-energy performance for p = 0 
is significantly different from other cases, the reason being 
the same as for figure 4. 
 Also, as a direct consequence of the prolonged net-
work life time, we can certainly expect the information 
delivery to improve in fuzzy diffusion as it gets more con-
servative, since more events are sourced and disseminated 
throughout the network. This phenomenon is explained in 
figure 5. 
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Figure 5.  Information Delivery 

 
3.3  Events reported 

Figure 5 shows the total number of unique events reported 
at all the sinks during the simulation run and it represents 
the information delivery efficiency of the diffusion algo-
rithms. The diffusion filter in ns-2 implements a simple in-
network processing technique, where intermediate nodes 
suppress identical events from different upstream 
neighbors.  Each event when generated at a source node is 
assigned a unique sequence number that enables duplicate 
event suppression at every hop. A large and dense wireless 
network comprises several non-disjoint paths from source 
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to sink and this simple technique significantly reduces du-
plicate transmissions. 
 Directed diffusion is expected to have the least 
performance, since it has the lowest network lifetime. It is 
shown as the benchmark (dark red line) to analyze the per-
formance of fuzzy diffusion. As seen in the graph, for p = 
0 the number of events reported is increased significantly 
due to the considerable amount of net-longevity achieved 
through extreme conservation. As mentioned before in 
Sec. 2.2.1, fuzzy diffusion does not degrade the informa-
tion dissemination even if it gets extremely conservative, 
since non-critical nodes (higher REL) still participate in 
data forwarding, reinforcing a high data rate path from 
source to sink.  
 Critical nodes declining to forward interests, reduces 
the number of alternate paths (from source to sink) in a 
large network, thereby reducing several slow exploratory 
paths. However, the improved network life-time and hence 
the extended high-data-rate delivery period clearly out 
shadows the reduction in information delivery due to ex-
ploratory paths. Also, the reduced alternate paths indirectly 
reduce duplicate event delivery at the sinks, further achiev-
ing marginal energy savings.   
  For p = 0.5 and p = 1, the event delivery performance 
closely approaches that of directed diffusion, while obtain-
ing significant energy savings. From these initial results, p 
= 0 seems to represent a good trade-off between energy 
conservation and throughput, although further research is 
needed. These initial results suggest that in a dense net-
work, diffusion nodes could afford to be highly conserva-
tive as there are abundant alternate paths, out of which at 
least one would be reinforced, contributing to the applica-
tion task.  
 The appropriate choice of p depends entirely on net-
work size, density and application requirements. High de-
gree of conservativeness might not be appropriate for a 
small network with relatively fewer paths, since the reduc-
tion in exploratory paths might significantly degrade the 
information delivery. The above results clearly depict the 
superior energy performance of fuzzy diffusion over di-
rected diffusion. 

 
4.   CONCLUSIONS AND FUTURE WORK 

In this paper we have introduced an energy optimization 
technique, fuzzy diffusion, that can be embedded into any 
diffusion algorithm and that appears applicable for peri-
odic monitoring applications. The effectiveness of this new 
technique in prolonging the lifetime of DSNs clearly indi-
cates the importance of explicitly incorporating energy 
information into the routing layer. Directed diffusion 
achieves energy savings through in-network data aggrega-
tion, which coupled with explicit energy awareness 
schemes (such as the one proposed here) is a significant 

and efficient step towards next generation wireless sensor 
applications. 
 Further work on fuzzy diffusion will explore various 
network and cross-layer parameters that influence the 
criticality of a node. The fuzzy association table is the 
most important design parameter of fuzzy diffusion and 
intensive research is needed to obtain its optimal gradient 
that maximizes energy efficiency and throughput perform-
ance. We anticipate that this may vary depending on 
whether nodes have non-renewable storage or a renewable 
energy source of finite capacity. Analyzing the perform-
ance of fuzzy diffusion under different network sizes and 
topology, with optimal data-aggregation will quantify any 
performance degradation due to the conservative approach. 

Embedding the fuzzy controller in additional variants 
of diffusion algorithm [3] and analyzing their performance 
might provide application-specific optimizations. Fuzzy 
logic can also be incorporated into the positive reinforce-
ment phase of diffusion such that, at any instant, nodes 
with high energy reserves are reinforced to send data at 
high rate. Similar schemes can be designed and imple-
mented using other decision making tools and their per-
formance compared with fuzzy scheme to complement this 
work. 
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